Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2310469121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502692

RESUMEN

The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , Animales , Ratones , SARS-CoV-2/genética , Anticuerpos/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 121(11): e2312082121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446854

RESUMEN

Chiral plasmonic surfaces with 3D "forests" from nanohelicoids should provide strong optical rotation due to alignment of helical axis with propagation vector of photons. However, such three-dimensional nanostructures also demand multi-step nanofabrication, which is incompatible with many substrates. Large-scale photonic patterns on polymeric and flexible substrates remain unattainable. Here, we demonstrate the substrate-tolerant direct-write printing and patterning of silver nanohelicoids with out-of-plane 3D orientation using circularly polarized light. Centimeter-scale chiral plasmonic surfaces can be produced within minutes using inexpensive medium-power lasers. The growth of nanohelicoids is driven by the symmetry-broken site-selective deposition and self-assembly of the silver nanoparticles (NPs). The ellipticity and wavelength of the incident photons control the local handedness and size of the printed nanohelicoids, which enables on-the-fly modulation of nanohelicoid chirality during direct writing and simple pathways to complex multifunctional metasurfaces. Processing simplicity, high polarization rotation, and fine spatial resolution of the light-driven printing of stand-up helicoids provide a rapid pathway to chiral plasmonic surfaces, accelerating the development of chiral photonics for health and information technologies.

3.
Nanoscale ; 10(10): 4927-4939, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29480295

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) are attractive as broad-spectrum antibiotics, however, their further engineering as antimicrobial agents and clinical translation is impeded by controversial data about their mechanism of activity. It is commonly reported that ZnO-NP's antimicrobial activity is associated with the production of reactive oxygen species (ROS). Here we disprove this concept by comparing the antibacterial potency of ZnO-NPs and their capacity to generate ROS with hydrogen peroxide (H2O2). Then, using gene transcription microarray analysis, we provide evidence for a novel toxicity mechanism. Exposure to ZnO-NPs resulted in over three-log reduction in colonies of methicillin resistant S. aureus with minimal increase in ROS or lipid peroxidation. The amount of ROS required for the same amount of killing by H2O2 was much greater than that generated by ZnO-NPs. In contrast to H2O2, ZnO-NP mediated killing was not mitigated by the antioxidant, N-acetylcysteine. ZnO-NPs caused significant up-regulation of pyrimidine biosynthesis and carbohydrate degradation. Simultaneously, amino acid synthesis in S. aureus was significantly down-regulated indicating a complex mechanism of antimicrobial action involving multiple metabolic pathways. The results of this study point to the importance of specific experimental controls in the interpretation of antimicrobial mechanistic studies and the need for targeted molecular mechanism studies. Continued investigation on the antibacterial mechanisms of biomimetic ZnO-NPs is essential for future clinical translation.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Óxido de Zinc/farmacología , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...